Journal of Organometallic Chemistry, 133 (1977) C33-C35 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

The X-ray Structure of Tetraethylammonium µ-Pentachlorothiophenolato-<u>bis</u>{pentacarbonyltungstate(O)}. MERVYN K. COOPER and MANUELA SAPORTA

School of Chemistry, University of Sydney, Sydney 2006, Australia

Department of Chemistry, The Polytechnic of North London, London N7 8DB (Received April 18th, 1977)

SUMMARY

 $[NEt_4][W_2(CO)]_{10}SC_6Cl_5]$ has been synthesised via the mononuclear pentacarbonyl species and characterised by elemental, IR and X-ray analyses; the bridging W-S-W angle in the dinuclear anion is 132.1^o

Tetraethylammonium μ -pentachlorothiophenolato-<u>bis</u>{pentacarbonyltungstate(0)}, [NEt₄] [W₂(CO)₁₀SC₆Cl₅],(I), is prepared in good yield at room temperature by the reaction of tetraethylammonium chloropentacarbonyltungstate(0) with thallium(I) pentachlorothiophenolate and silver tetrafluoroborate (molar ratio 2:1:1), in tetrahydrofuran (THF), under an atmosphere of nitrogen. This method also provides a simple route to the previously reported [1] complex [W₂(CO)₁₀SC₆H₅]⁻. The IR spectrum of (I) in THF has distinct carbonyl stretching bands at 2073(w), 2062(m), 1977(m,sh), 1941(vs) 1916(s), and 1876(s) cm⁻¹ which by analogy with the spectrum of [Cr₂(CO)₁₀I]⁻ (II) is consistent with a bent W-S-W bridge [1,2,3].

The crystals of (I), $C_{24}C_{15}^{H}B_{20}^{NO}B_{10}^{SW}S_{2}^{M}$, M = 1059.5, are triclinic, spacegroup PI, <u>a</u> = 13.682, <u>b</u> = 11.699, <u>c</u> = 10.597 Å, $\alpha = 91.71$, $\beta = 100.31$, $\gamma = 92.20^{\circ}$, <u>v</u> = 1666.5 Å³, <u>b</u> = 2.11 g cm⁻³ for $\underline{Z} = 2$. A Philips FW1100 four circle diffractometer was used, with graphite crystal monochromatised Ko- \underline{K}_{α} radiation, to collect 2770 reflections with $I/\sigma(I) \ge 3$. Full matrix refinement of the atomic parameters (W, S and Cl anisotropic) has given an R-value of C.036. The structure of the anion is shown in Fig.1.

Fig.1. The structure of the complex anion $[W_2(CO)_{10}SC_6Cl_5]^-$ with the bridging bond lengths $(\stackrel{\circ}{A})$ and angle $(\stackrel{\circ}{O})$.

The two tungzten atoms are bridged by the sulphur atom of the pentachlorothicphenolate ligand with a large W(1)-S-W(2) angle of 132.1(1)^o. In contrast the Cr-I-Cr angle in (II) is only 117.9(1)^o; this is also greater than the value expected for sp³ hybridisation of the bridging atom. The only sulphur-bridged ditungsten X-ray structure previously reported [4], $(\pi-C_5H_5)_2W(\mu-SC_6H_5)_2W(CO)_4$, has two bridging sulphur atoms, with equal W-S-W angles of 104.9(3)^o and approximately pyramidal sulphur coordination geometries. It seems probable that the size of the bridging angle (M-L-M), in complexes with two M(CO)₅ groups, is largely determined by minimisation of contacts between carbonyl groups on the two halves of the bridged complex. The M-L distances are considerably shorter in (I) than in (II); in (I) the W-S distances are both 2.585(4) $\frac{8}{2}$ and in (II) the mean Cr-I distance is 2.789(5) $\frac{8}{2}$.

C34

Consequently the opening cut of the W-S-W angle in (I) to 132.1° results in a W-W distance of 4.73 Å which is very similar to the Cr-Cr distance of 4.78 Å in (II) and the closest intramolecular carbonyl oxygen-oxygen contacts in the two complexes are also similar, 3.19 in (I) and 3.01 Å in (II).

The equatorial tungsten-carbonyl bond lengths (cis to the bridging thiol ligand), mean 2.002(6) Å, are significantly longer than the corresponding trans bonds, mean 1.935(12) Å. The longer W-C bonds may be attributed to competition of the mutually trans carbonyl ligands for π -electron density from the tungsten atoms which would reduce the W-C bond order. It may be deduced that any π -bonding from the tungsten to the bridging sulphur atom is much weaker than that to the carbonyls.

REFERENCES

- 1. J.K.Ruff and R.B.King, Inorg. Chem., 8 (1969) 180
- 2. J.K.Ruff, Inorg. Chem., 7 (1968) 1821
- 3. L.B.Eandy, J.K.Ruff and L.F.Dahl, J. Amer. Chem. Soc., 92 (1970) 7327
- 4. K. Prout and C.V.Rees, Acta Cryst. B30 (1974) 2717