Preliminary communication

The x-ray Structure of Tetraethylammonium μ-Pentachlorothiophenolatobis\{pentacarbonyltungstate (O)\}.

MERYYN K. COOPER And MANUEIA SAPORTA
School of Chenistry, University of Sydney, Sydney 2006, Australia MARY HCPARTLIN

Department of Chemistry, The Polytechnic of North London, London N7 8DB (Received April 18ch, 1977)

SURIARY
[$\left.\mathrm{NEt}_{4}\right]\left[\mathrm{H}_{2}\left(\mathrm{CO}{ }_{10} \mathrm{SC}_{6} \mathrm{Cl}_{5}\right]\right.$ has been synthesised via the mononuclear pentacarbonyl species and characterised by elemental, IR and X-ray analyses; the bridging $W-S-W$ angle in the dinuclear anion is 132.1°

Tetraethylammonium μ-pentachlorothiophenolato-bis\{pentacarbonyltungstate (0)\}, $\left[\mathrm{Nst}_{4}\right]\left[\mathrm{W}_{2}\left(\mathrm{CO}{ }_{10} \mathrm{SC}_{6} \mathrm{Cl}_{5}\right]\right.$,(I). is prepared in good Yield at room temperature by the reaction of tetraethylamonium chloropentacarbonyltungstate (O) with thallium(I) pentachlorothiophenolate and silver tetrafluoroborate (rolar ratio 2:1:1). in tetrahydrofuran (THF), under an atmosphere of nitrogen. This method also provides a simple route to the previously reported [1] complex $\left[\mathrm{W}_{2}{ }^{(\mathrm{CO}}{ }_{10} \mathrm{SC}_{6} \mathrm{H}_{5}\right]$ - The IR spectrum of (I) in THF has distinct carbonyl stretching bands at 2073(w), 2062(m), 1977 (m,sh), 1941 (vs) $1916(s)$, and $1876(s)$ col $^{-1}$ which by analogy with the spectrum of $\left[\mathrm{Cr}_{2}(\mathrm{CO}) 10^{I}\right]^{-}(I I)$ is consistent with a bent W-S-W bridge $[1,2,3]$.

The crystals of (I), $\mathrm{C}_{24} \mathrm{Cl}_{5} \mathrm{E}_{20} \mathrm{NO}_{10} \mathrm{SH}_{2}, \mathrm{M}=1059.5$, are
triclinic, spacegroup $p \bar{I}_{r} \underline{a}=13.682 \mathrm{~b} \underline{b}=11.699 \mathrm{c}=10.597 \mathrm{~A}_{\mathrm{r}}$ $\alpha=91.71, \beta=100.31, Y=92.20^{\circ}, \underline{V}=1666.5 \AA^{3}, \underline{D}_{C}=2.11 \mathrm{~g} \mathrm{~cm}^{-3}$

C34
for $\underline{z}=2$. A Philips F . 1100 four circle diffractopeter was used. with graphite crystal monochromatised ko- \mathbb{K}_{0} radiation, to collect 2770 reflections uith $I / \sigma(I) \geqslant 3$. Full matrix refinenent of the atoric parameters (W, S and $C l$ anisotropic) has given an r-value of c.o36. The structure of the anion is shown in Fig.l.

Eig.1. The structure of the complex anion $\left[\mathrm{H}_{2}(\mathrm{CO}) 10^{\mathrm{SC}} \mathrm{Cl}_{5}\right]^{-}$with the bridgi:ng bond lengths ($\left(\mathbb{R}\right.$) and angle (${ }^{\circ}$).

The two tungzten atons are bricged by the sulphur atom of the pentachlorothicphenolate ligand witi a large $\mathrm{H}(1)-\mathrm{S}-\mathrm{N}(2)$ angle of $132.1(1)^{\circ}$. In contrast the Cr-I-Cr angle in (II) is only 117.S(I) ${ }^{\circ}$: this is also greater than the value expected fot $s p^{3}$ hybridisation of the bridging atom. The only sulphux-bridged
 has two bridging sulphur atoms, with equal W-S-W angles of 104-9(3) ${ }^{\circ}$ and approximately pyramidal sulphur coordination geometries. It seens probable that the size of the briaging angle ($M-L-M$), in complexes with two $\mathrm{M}_{(\mathrm{CO}}^{5}{ }_{5}$ groups, is largely detemined by mininisation of contacts between carboryl groups on the two halves of the bridged compiex. The M-L distances are considerably shorter in (I) than in (II); in (I) the H (S distances are both $2.585(4)$ of and in (II) the mean Cr-I distance is 2.789 (5) $\%$.

Abstract

Consequently the opening cut of the H-S-w angle in (I) to 132.1° sesults in a W - W distance of 4.73% which is very similar to the Cr-Cr distance of 4.78 \& in (II) and the closest intramolecular carbonyl oxygen-oxygen contacts in the two conplexes are also similar. 3.19 in (I) and $3.01 \&$ in (II).

The equatorial tungsten-carbonyl bond lengths (cis to the bridging thiol ligand), mean $2.002(6) A$, are significantly longer then the corresponding trans bonds, wean $1.935(12) \mathrm{A}$. The $10 n g e r$ H-C bonds may be attributed to competition of the mutually trans carbonyl ligands for π-electron density from the tungsten atons which would reduce the $w-C$ bond order. It may be deduced that any --bonding frcm the tungsten to the bridging sulphur atom is much weaker than that to the carbonyls.

REFERENTCES

1. J.K.fouff and R.B.King, Inorg. Chem., 8 (1969) 180
2. J.K.Ruff, Inorg. Chem., 7 (1968) 1821
3. L.B.Eandy, J.K.Ruff and L.F.Dahl, J. Amer. Chem. Scc., 92 (1970) 7327
4. R. Prout and C.V.Rees, Acta Cryst. B30 (1974) 2717
